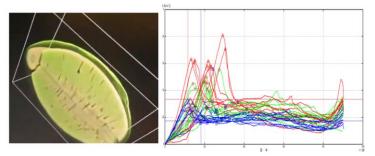
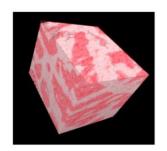


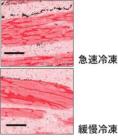
AGRICULTURE. 農林水産業



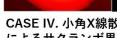
CASE I. 植物中の軽元素・セシウム(左)、ホヤ血球細胞の異なる 価数のバナジウムの検出(右)

(M.P. Isaure et al., Biochimie, 88, 2006, Ueki et al., BBA, 1494, 2004)




(東北大学・ 農学研究科)

CASE II. 位相差X線CTによる枝豆の3D構造と機器による硬さ分析


(仙台市放射光トライアルユース事業による東北大学と仙台農業協同組合との共同研究)

緩慢冷凍

CASE III. 急速冷凍マグロ大トロの3D可視化と冷凍条件検討 (仙台市トライアルユース事業による東北大学とマルセ秋山商店との共同研究)

CASE IV. 小角X線散乱コントラスト (右) によるサクランボ果実内道管の可視化

(東北大学矢代航准教授提供)

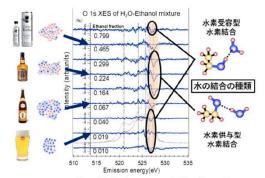
元素分析による食と環境の安全・機能評価

- ・食品や環境中の重金属などの検出による安全性評価 (CASE I)
- ・栄養成分、機能成分の検出・利用による高付加価値化(CASE I)
- ・ブランド牛などの人工繁殖における、卵子、精子の状態評価

食品テクスチャーと美味しさの評価・標準化

- ・食品の内部構造とテクスチャーや味覚との関係の標準化(CASE II)
- ・農畜水産物生産や育種、食品加工プロセスの評価と高度化
- ・農畜水産物・食品のブランド化、競争力強化

食品冷凍技術の開発・高度化


- ・冷凍農産物内部の非破壊可視化による冷凍技術の評価(CASE III)
- ・冷凍食品の加工技術や流通プロセスの最適化によるブランド化
- ・美味しさ・テクスチャーを保つ解凍技術の開発

農畜水産物の美味しさの見える化

- ・果実の道管組織の非破壊観察による美味しさの見える化(CASE IV)
- ・農畜水産物の非破壊分析による評価・標準化と競争力強化
- ・ウィルス等による生産被害の早期発見と予防技術開発

利き酒師の味覚の数値標準化と利活用

- ・水ーアルコールの水素結合状態の解析による「利き酒」(CASE V)
- ・仕込み過程、発酵過程の可視化(米、麹、酵母など)による 醸造高度化、酒米・酵母育種、製品高付加価値化・ブランド化

CASE V. 軟X線分光による酒類中の水-エタノール混合状態の解析

(東京大学原田慈久教授提供)